A common role of CRP in transcription activation: CRP acts transiently to stimulate events leading to open complex formation at a diverse set of promoters.

نویسندگان

  • H Tagami
  • H Aiba
چکیده

We have shown previously that the cyclic AMP receptor protein (CRP) is not required after the formation of the open complex at the lac promoter (Tagami and Aiba, 1995, Nucleic Acids Res., 19, 6705-6712). In this paper, we investigate the role of CRP in transcription activation at the malT and gal promoters. At the malT promoter, RNA polymerase (RNAP) forms a nonproductive RNAP-promoter binary complex in the absence of CRP and a productive CRP-RNAP-promoter ternary complex in the presence of CRP. CRP can be removed from the malT ternary complex by a moderate concentration of heparin. The resulting binary complex is functionally identical to the ternary complex. At the gal promoter, RNAP predominantly forms a binary complex at the P2 promoter in the absence of CRP and a ternary complex at the P1 promoter in the presence of CRP. A very high concentration of heparin is able to dissociate CRP from the galP1 ternary complex without changing the properties of the complex. These data indicate that CRP is not required for the maintenance of the ternary complex and plays no role in the subsequent steps, irrespective of the promoter. We conclude that the common role of CRP in the activation of transcription is to stimulate events leading to the formation of a productive open complex at a diverse set of CRP-dependent promoters. We suggest that the interaction between CRP and RNAP is needed only transiently for the activation of transcription.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spacing requirements for Class I transcription activation in bacteria are set by promoter elements

The Escherichia coli cAMP receptor protein (CRP) activates transcription initiation at many promoters by binding upstream of core promoter elements and interacting with the C-terminal domain of the RNA polymerase α subunit. Previous studies have shown stringent spacing is required for transcription activation by CRP. Here we report that this stringency can be altered by the nature of different ...

متن کامل

Mutations that alter the ability of the Escherichia coli cyclic AMP receptor protein to activate transcription.

The effects of a number of mutations in the E. coli cyclic AMP receptor protein (CRP) have been determined by monitoring the in vivo expression and in vitro open complex formation at two semi-synthetic promoters that are totally CRP-dependent. At one promoter the CRP-binding site is centered around 41.5 base pairs upstream from the transcription start whilst at the other promoter it is 61.5 bas...

متن کامل

Role of CRP in transcription activation at Escherichia coli lac promoter: CRP is dispensable after the formation of open complex.

The role of cAMP receptor protein (CRP) in transcription activation at the Escherichia coli lac promoter was investigated focusing on the steps after the formation of open complex. Although CRP binding to the lac DNA is stabilized in the ternary open complex, a high concentration of heparin dissociates CRP from the open complex without affecting the interaction between RNA polymerase and promot...

متن کامل

Kinetics of transcription initiation at lacP1. Multiple roles of cyclic AMP receptor protein.

The cyclic AMP receptor protein (CRP) acts as a transcription activator at many promoters of Escherichia coli. We have examined the kinetics of open complex formation at the lacP1 promoter using tryptophan fluorescence of RNA polymerase and DNA fragments with 2-aminopurine substituted at specific positions. Apart from the closed complex formation and promoter clearance, we were able to detect t...

متن کامل

Transcription activation at Escherichia coli promoters dependent on the cyclic AMP receptor protein: effects of binding sequences for the RNA polymerase alpha-subunit.

Transcription activation at two semi-synthetic Escherichia coli promoters, CC(-41.5) and CC(-72.5), is dependent on the cyclic AMP receptor protein (CRP) that binds to sites centred 41.5 and 72.5 bp upstream from the respective transcription startpoints. An UP-element that can bind the C-terminal domain of the RNA polymerase (RNAP) alpha-subunit was cloned upstream of the DNA site for CRP at CC...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The EMBO journal

دوره 17 6  شماره 

صفحات  -

تاریخ انتشار 1998